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Executive Summary

The research reported upon here addresses several elements of the structure of nearly

parallel turbulent shear flow. Both boundary and free shear layer flows In constant as

well as variable pressure fields are addressed. With respect to variable pressure condi-

tions, unsteady as well as steady flows are embraced by the approaches. As a serendipi-

tous consequence, many of the results also apply to flowfield separation in time-dependent

flow, a topic of current interest to AFOSR. Specifically, new (and soon to be published)

aspects of:

* Turbulent structure advection velocities,

a Turbulent boundary layer "Instability", and

e Turbulent shear flow angular structure

have been exposed. Due to the inherent "try and fall" nature of basic research, the

approximately one man-year effort invested so far has not concluded the study of any

of these three areas, although four publications have resulted from the investigation.

The work has, however, established the feasibility of further inquiry benefiting:

* Basic turbulence physics,

* LES and turbulence modeling, and

* Flowfleld separation physics In steady and unsteady flow.

In particular, a coordinated experimental and computational study of those turbulent

shear flow details which have been exposed would, In fact, serve the dual goals of
0 understanding turbulence structure as well as searation physics.
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As a direct result of the work reported here, an SBIR study of turbulence in hypersonic

flow was initiated for AFOSR, the fruits of which now support an advanced R&D effort

at Eglin AFB.

9

0

• 0



Discussion

The focus of the research reported upon here is the structure of nearly parallel turbu-

lent shear flows in constant and variable pressure fields. Both wall-bounded and free

shear layers were studied, as appropriate, and the variable pressure results apply to

unsteady as well as steady flows. In addition, many of the results bear directly upon the

generalized separation problem, addressed here insofar as it is relevant to turbulent

structure details. This is reminiscent of Prandtl's view that turbulence is sustained by

local separations.

The work discussed here is scheduled to be submitted for publication during the next

few months. In addition, various other tangential papers which have resulted from this

work have been published and are included in Appendix A.

In reporting upon the achievements of this research, it Is easy to present them linearly

in an orderly and coherent form. In actuality, the procedures Involved where chaotic and

not serial but strongly linked parallel efforts that took form only after considerable stum-

bling and "probing for soft spots" in the mathematics. Therefore, with this admission in

the forefront, the discussion begins arbitrarily with a report on work carried out relative

to the propagation of large scale structures In turbulent shear flows. The only rationale

for beginning with this is Its simplicity and possible surprisingly large future impact.

&
I. Advection Velocities

The following generalized evolution equation:

aL aL
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arises in several applications relevant to this work:

1. As an integral boundary layer thickness equation,

2. As the equation for an instability envelope in a two-time

perturbation analysis,

3. As the governing equation for the flow angle, and

4. As a pdf transport equation.

The second and third source of Eq. (1) shall be revisited in connection with the next

aspects of the work to be reported. No advantage has yet been taken of the congruence

to the third area.

For our purposes, the (two-dimensional or spanwise-averaged three-dimensional) time-

dependent equations of motion may be integrated across the flow' to provide Eq. (1),

wherein the following definitions apply:

L B G, the momentum thickness,

Uc- U/H, the freestream velocity divided by the shape factor,

P E generalized streamwlse gradients term, and

G = Cf/2 + (v /UX1 - ujU), the skin friction coefficient
plus vectoed wall rfass transfer terms, times Uc.

Of Interest, initially, was simply how fast large scale structures propagate. Clearly,

from Eq. (1), a characteristic speed equal to H" times the local freestream velocity

appears. For constant pressure turbulent boundary layers, H a 1.4 and, therefore, H- Io

0.7, consistent with experimental evidence regarding certain of the largest scale struc-

tures. For our purposes, therefore, H is now defined by the expression:

-4-



H -U/Uc (2)

whereas, it is computed from 6*/e, the ratio of displacement to momentum thicknesses.

With respect to interpreting the equations, their solutions and H, physically, this orienta-

tion is more useful than discussing the 6*/e scale ratio.

In order to solve Eq. (1) for the evolution of a specific burst-like structure in the shear

flow, P must be computed, ostensibly from the terms in its defining equation. For this

study, however, an inverse approach was taken in that P itself was specified parame-

trically. Subsequently, the definition for P was used to solve for the implied Uc and H

distribution from the equation:

f a a U jkn H2 + I' + Uc~x }2n Uc = P(3)

Of prime importance here is the appearance of two additional characteristic speeds of

propagation,

Uc '/U = (H + 2)/2H , and

(4)

U c" = 2U c

For a constant pressure turbulent boundary layer with H = 1.4, both Uc' and Uc" are

considerably greater than the freestream velocity, consistent with experimental obser-

vations. In addition, several aspects of these functional forms for the three characteris-

* tic speeds are clarified by the following plot:
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Over the range of data encountered experimentally, both U c and Uc"1 are always less

than and greater than freestream, respectively, for both lamnar and] turbulent flows.

For laminar flow, U I Is always less than freestream. Hiowever, for turbulent flow Ue

C~C

transitions from greater than freestrearn to less then freestreamn velocity at H=2. It Is

the hypothesis of this work, therefore, that a significant structural change In the flow

relative to the propagation of large scale structures occurs at ths point. Clearly, below

a value of H=2.0, the freestreamn Is not able to feed-forward Information on H (carried

by Uc'), as can occur above -=2.0. In addltlon, the broad band of experimental H values

that characterize turbulent separation (-1.8 Tr 2.3) may merely reflect wave dynamics

peculiar to the particular pressure distributions whereas the critical value of H Is rle

2.0.
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With the aid of semi-empirical H and Cf laws2 , a P function which linearly ramped up

in time to a Gaussian spatial distribution was input to a numerical solution of Eqs. (1)

and (3). Two peak magnitudes of P were identified which forced the peak H to be in

the range of 2.0 and somewhat smaller, respectively. When the flowfield solution attain-

ed equilibrium, a disturbance was injected into the flow In the form of pulsed and vec-

tored mass transfer. For the smaller of the two peak P and, therefore, H levels, the

disturbance was not catastrophic. However, at the larger peak P, the disturbance caused

the shape factor to exceed 2.0 and grow exponentially, as shown in the accompanying

Figs. 1&2, a-c. These results also point out the effect of this inverse approach wherein

the local external flow responds to the presence of the 'bulge' in the boundary layer.

This effect is critical to exposing the importance of H=2.0.

In conclusion, to the extent possible with the time and funds available, the Importance

of Uc' and its behavior as H changes in space and time due to steady and non-steady

pressure gradients has been established.

-7-



Figs. 1 & 2, a-c.

*Figs. 1: Damped Response of TBL to Pulsed Blowing. H undisturbed' 1.91
and v w/U = 0.003.

la. Momentum Thickness

lb. Freestreamn Velocity

1c. Shape Factor

Figs. 2: Undamped Response of TBL to Pulsed Blowing. Hudtued 1.97
and v w/U = 0.003. nltre'

2a. Momentum Thickness

2b. Freestreamn Velocity

2c. Shape Factor
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* II. Flow Angle Structure

A. Background

0 Previous discussion relative to pulsed and vectored wall mass transfer indicated how

this research first stumbled onto the importance of flow angles relative to vorticity

transport. In particular, the vectored wall mass transfer term:

0
(1 - uw/U) (vw/U) , (5)

0 used to generate the pulsed disturbance discussed in the part I. of this section, was stu-

died in the first paper included in Appendix A. Written in terms of the variables:

Sa E vwl/Uw  and

(6)

m = (uw2 + Vw 2)fU

the vectored mass transfer term becomes:

* {m'-m(1e') t } {-a/(lx')) .(7)

Equation (7) exhibits the following extreme:

C

uw/U = 1/2, for a given a, and

(/)
* Uw/U =(1:±(l 8mn') )/A, foralglvenr.
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* Subsequently, the research led to the second paper in Appendix A, wherein the details

of vectored and pulsed mass transfer on the boundary conditions are presented. The

essence of that work, as it relates to the angular structure of turbulent shear flows,

* may be presented in terms of the two-dimensional incompressible Navier-Stokes equations:

ut + E (uw) = -H x + vw Y and

* (9)

v t- I (uw) = -H - vw
ty x

* where: 0* E! v/u I

w = vorticity and

H p/P + (u2 +v2)/2

Note that, evaluated at the mass transfer surface, these equations prove that the vorti-

city flux varies even In constant pressure flows If the mass transfer Is vectored, pulsed

* or exhibits spatial variation.

By using the condition of flowfleld incompressibility, Eqs. (9) may be cross-differentiated

* to provide the following expression for H:

72H = W + U (w - Ow ) (10)y x "

Inasmuch as streamlines (*) are defined by: d*=udy-vdx, along $ = constant lines, dy/dx =

E. Therefore, the H field responds to gradients In vorticity normal to the streamlines.

*Note that e was also used to represent the momentum thickness In part I.

-16-



By manipulating Eqs. (9), the following expression ensues:

Et - w = - (Hy - OHx )/u - v(W x + O y )/u , (II)

where (1+0 2) has been approximated by I in the coefficient of w for weakly non-paral-

lel flows.

The interpretation of Eq. (11) is that 0 t is a measure of, but lags or leads the vorticity

according to cross-streamline gradients in H and along-streamline gradients in w.

With this motivation, the basic angular structure of turbulent shear flows is being analy-

zed to expose the physics and aid the modeling. As this report Is being written, a fully

three-dimensional solution of a nominally two-dimensional free shear layer is being com-

pleted, which forms the basis for a future investigation and publication.

0
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* B. Development

For the purposes of exposition, consider initially a two-dimensional flowfield (u, v; x , y)

* and examine the behavior of the angular tangent variable:

0 E v/u (12)

By applying traditional Reynolds decomposition, it may be shown that:

E -/u

(13)

where: e E
01

In addition:

TM (-U - -)/ . (14)

By combining Eqs. 13 & 14, the following expression ensues:

C

o + UG 7 iti/) (15)

0n

where: = u'- /' ,

herein referred to as the local Reynolds stress correlation coefficient.
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For small and turbulence intensity, Eq. (15) may be approximated by:

E) (16)

which has the obvious interpretation that the difference between the mean flow angle

and the angle of the mean flow is equal to the local Reynolds stress correlation coeffi-

cent. In addition, even on lines of symmetry when 9E = 0, may be non-zero and is

equal to 1, with the aforementioned restrictions.

In order to form various correlations, neglecting higher order fluctuation products, the

fluctuating angle may be written:

" (' = 0(v'/V) - 9(u'/U) + H.O.T. , (17)

where: H.O.T. - (9ru- -eOu,)/ .

In the four quadrant decomposition' of coherent structure data, the second and fourth

quadrant contribute most to the net production of Reynolds stresses, associated with

0 the ejection and sweep. Clearly from Eq. (17), e' Is largest when v' and u' are of the

opposite sign, as In the second and fourth quadrant. However, v' and u' are weighted

by E and 9, which differ by M. Therefore, the behavior of and e, is signlficant and, In

conjunction with conventional approaches to obtain ; ad, and thus e, may be a more

effective way of exposing, e.g., the Reynolds stress structure.

0



C. Analysis

As shown in Appendix B, the full N-S equations may be written in terms of angular

variables in the form:

N3t e = (C - OF)/u and

N a = (H- aF) u
3t

where: (18)

N3 t alat + u (Wlax + Galay + aB/z)

O,( = v/u, w/u

F,G,H -"x. vV2u1  ; 1 = 1,2,3 , and

P p/p.

Consider, for simplicity, an essentially lnvlscid, two-dimensional flow such that Eq. (18)

and the continuity equation become:

et + (ue) x + (ue') = P x/u and

(19)

u 9 + (ue)y a 0

M20-



Written in streamfunction (x, @) variables, Eq. (19) becomes:

Ct + u- x = e (Px - u P )/u . (20)

By expanding C in a series, the first order weakly non-parallel solution obeys the follow-

ing equation:

+ t u+ = ( Px /u + H.O.T. . (21)et x

Conveniently, this is the precise form of the momentum thickness evolution equation

studied in part I. of this section. We have also exposed a new parameter, P x/u, to inves-

tigate such that the understanding of, and ability to model coherent structure is re-

inforced. As this report is being written, a fully three-dimensional N-S solution of a

nominally two-dimensional planar mixing layer, such as that shown in Figs. 3, is being

completed for fluture publication, along with a refined version of Appendix B. The fluc-

tuation data obtained shall be used to evaluate the angular fluctuations and various

correlations thereof with respect to turbulent burst/sweep physics and transport modeling.

-21 -
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Figs. 3. Typical Simulations of a Free Shear Layer
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SIII. Instability

The pioneering work of Landahl' in weakly non-linear instability (wave-like) representa-

* tions of turbulence forms the basis for the computations of coherent structure fluctua-

tions which have been carried out. A multiple-element decomposition 5"6 of the governing

equations was used in which temporally coherent and two distinct spatial scales of tern-

* porally incoherent fluctuations are 'superposed' in order to constitute the solution. By

judicious use of appropriate time, phase and spatial averaging, governing equations for

each element may be derived, as shown in Fig. 4.

.2 m



0

Fig. 4.

A FOUR-ELEMENT DECOMPOSITION OF THE NAVIER-STOKES EQUATIONS

S&71 1 J2

00
T U1

* Decompose the flow into four components by:

v, u, • i , + u;' + U;
1  U1 + + ; + P

* p- P+F+P' +p5  I
where: U1, P -time mean flow

9 P , - coherent component

Ui, P1 - Incoherent component, large scale

u; p' Incoherent component, mall scale

6
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* Mean Flow:

- v 2U

ax1

* Coherent Fl ow:

+U -+ U. =2  - . + V--- L j L j+ -j

u.0

0x1

Incoherent Large Scale Flow:

F+4(uj + Uj ) r.+ui I (u1+ V1) 1p +P' 1 8 r

Incoherent Small Scale Flow

+ (U + + U , + V
j uP + Y; -raj + U,+U

0u
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where - - time average

< > - phase average

f } *large scale average

Define fluid stresses:

R ! UIJj j and

r

Further, decompose these streses as:

R -C * +R

ij i + F'13 +

-26-



• Of primary interest in the research reported here is the large-scale temporally incohe-

rent fluctuating element, generally referred to as (spatially) conerent turbulent structure.

The small-scale temporally incoherent element enters into and affects the coherent

structure solution, however. Rather than solving the small-scale equations, the terms in

the large-scale equations resulting therefrom are modeled utilizing classical gradient

transport theory. 7 '8 '9

The virtue of retaining temporally coherent elements in the decomposition is that un-

steady flow effects on the turbulent structure may be readily incorporated. 9 In parti-

* cular, the effect of various time-dependent freestream velocity fields on the turbulent

transport, insofar as it affects, for example, flowfield separation, could be addressed

by this formulation.

The conventional wisdom regarding the constant pressure mean turbulent flow velocity

profile is that it is stable. This is clear form the work of Landahl in which fluctuation

* correlations arising from non-linear terms are treated as a known non-homogeneous func-

tion. The resultant Orr-Sommerfeld problem generates no unstable modes. In the present

work, the temporally incoherent small-scale processes in the large-scale equations are

considered to be (at least partially) functions of the large-scale solution. The modeling

employed is gradient transport with a spatially-variable and non-equilibriumlo (small-

scale eddy viscosity) coefficient, c. The non-equilibrium is specified to be of the form:

£E Dc/Dt + c = c eq (22)

-27-
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* The objective of this aspect of the work was to review the stability characteristics of

the mean, turmulent velocity profile with a spatially-variable and non-equilibrium small-

scale process model and to structure the solution for spatially- and temporally-variable

* pressure fields. The transformed weakly non-linear vorticity equations are shown in Fig.

5. Note also the possibility of resonance between the vertical vorticity and vertical

velocity.

C

0.
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Fia. 5.

0

FOURIER AND LAPLACE TRANSFORMED 3-D VORTICITY EQUATIONS

LINEARIZED LARGE SCALE MOTIONS

*('-C) +. [(Re-+ C)(D 2.k2) . (D*,)4b;u..(D) W.] (D)(2D242)}u3

! (DC)D - (2D2C u2

*(2)

• ( '..c} •[r(;e'l+ 00l2"k2) + We~) ; , _a(clDk)u

L• 3~ ~ (DO (4) ;,

e * (Dc)D UPCD2)) ;2

+ 1-. [D*' ( )D])u2

-a
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Tne mean velocity fields presented in Appendix C were taken from NBS data due to

Klebanoff and a wide range of values for:

B = real span-wise wave number,

= real frequency,

TC = non-equilibrium time constant, and

0 a = peak value of c/v
mag

were investigated. (Note that non-dimensionalization with respect to 6* and U is assumed

throughout). The eddy viscosity distributions which were utilized are also shown in Appen-

dix C.

As with Landahl's work, variations in the solution with 0 and w were relatively un-dra-

matic. Therefore, at 6=0. I and w=2.0, a wide range of -r values was studied. Surpri-

singly, the effect of non-equilibrium on the solutions was relatively minor. At a T of 1.0,

various c nag values and c spatial distributions were also studied. As long as a spatially

non-uniform c of the general form shown previously was utilized, unstable wave modes

were observed. The typical results presented here In Fig. 6 Indicate that, with appropriate

small-scale process modeling, linear Instability (indicated by KaI /ar < 0) of even

the constant pressure mean turbulent flow velocity profile Is possible. Additional results

are presented in Appendix C.

-30-
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Inclusion of non-paraliel effects anc (spatially and/or temporally) variable freestream

velocity effects are included utilizing conventional multiple-scale Derturoation techni-

ques. Note that botri spatial and temporal pressure variations are represented by the

* temporally coherent element of the decomposition for convenience. In addition, these

effects and this procedure is identical to that carried out for the evaluation of weakly

non-linear terms in the large-scale structure solution itself, in the absence of temporally

• coherent effects. In each of these cases ar amplitude evolution equation which envelopes

the oscillation is derived and found to be identical in form to that of the generalized

shear layer bulge evolution and angular structure equations previously studied.

0

0
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Results and Conclusions

As a result of this research carried out under contract to AFOSR/NA, the following

discoveries may be enumerated:

* In non-steady turbulent shear flows, one of the dominant advection velocities
transitions from 'super' to 'sub', relative to the local freestream velocity, at
a value of the shape factor (H) equal to 2. At this point the freestream is
able to feed-forward information regarding the disturbance and catastrophic
growth leading to separation occurs.

a The velocity vector angle structure of turbulent shear flows appears to be a
useful variable for interpreting coherent structure data, predicting Its evolu-
tion and formulating turbulent transport models.

e If adequate models of the apparent stresses in constant pressure turbulent
boundary layers are employed, linearly unstable modes arise. Extension to
spatially- and/or temporally-variable pressure fields is straightforward.

Based on these accomplishments, it Is concluded that further work is warranted relative to:

a An experimental and detailed numerical study to corroborate the observed
criticality of H = 2.

* Fully three-dimensional numerical simulations and experimental Investlga-
tions of, for example, free shear layers In terms of their angular structure,
relative to both coherent structure Interpretation and modeling.

a The solution of a full Initial value problem utilizing the weakly non-linear
wave-guide simulations of large-scale structure.

* The final result and conclusion of this effort Is that It motivated an SBIR study on

hypersonic turbulence for AFOSR, the fruits of which now support and advanced R&D

project at Eglin AFB.

0
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Turbulent Boundary Layers
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T HE excellent data presented in Ref. 1 provide substan-
tial guidance in the understanding of many of the

subtleties of turbulent boundary-layer (TBL) flows with
blowing, and the modeling thereof. In an effort to peel away
quniatively the various interacting elements of the flow, it
is proposed that the following approach may be useful for
exploiting such data in model development. If the Reynolds-
averaged equations of motion are further locakl spatially
averaged in horizontal planes, with a scale large relative to
the porosity yet small relative to the boundary-layer growth.
the discrete jet blowing may be convered ino Its distributed
m transfer equivalent. For example.

( wher doot te wId trae vel ot amiatio
therefrom, respectively. As a reinr a( this local spatial
averain, the governing equation neallearitie generate ex-
tra (Reynolds stesailk.e) terms due to the spatial variation.
(Note that a piecewise Constant MWte fuanction Is ase such
that so Leonard terms appear.) la iditioa, the average nor-
mal velocity at the surface is now simply related to the total
flow rate and ares, whc reduce the lk" jet-lke values of
wail nomal velocty by the open are ratio of the surface.
while the at dqe ski ctioe is the weihted sum of the
sod Whrac pius open srdce ontributions. Phially, the
doubly average smmse velocity sad twutleas a the
wail an now nomw".

* f~t appeas tho the locatim on do the h du layer at w-iN
Wir)&O (wher # b the tiemvagas mutual velocty)

Nile a leve do vd4s the relaively weakl 'hu

10101"d ius") 36 1911. V £i10l0as~ OfAW
Avenaft end Am ed1 be. AN is amned
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outer flow, which is readily characterizable from even linear where
theory,1 from an inner flow where the (&i*6*) decay results b ()./u, (5)
from the discrete jet mixing and strcamwise deflection.
Given some relationship betwen (ii),, (, ,').,, (u''),, By systematically varying the constants C, and C., the
and the wall structure (where 'denotes turbulent fluctuations data may be fit reasonably well with C, =0.002 and
and w wall conditions), the inner layer typified by high C. = - 80.0 for the titanium wall, whereas C, = - 0.0022 and0 shear. relatively low speed flow may also be characterizable.3  C: = - 50.0 are indicated for the sintered wall. as shown in

In a constant pressure integral formulation (which may be Fig. I. Clearly, C, scales with Cf and C, scales with C,
most convenient for data analysis), the aforementioned implying that the friction velocitv is the appropriate
phenomena may be expressed: reference. Note that, since the coefficients are negative, it is

evident that the effect of - (,''),, is dominant since we
d9( (ai>,, (v),. (W.>. (u't'). C( expect -('u'). to be positive.

" --lu2 2 2) If this functional dependence persists, analysis suggests* that a rise in the measured Cr is possible, over a range of
where 9 is the momentum thickness, Cf the skin friction larger b values than used in Ref. 1, prior to a falloff at still
coefficient, u, the freestream velocity, and the additional higher mass transfer rates. It also should be mentioned that,
terms correspond to the three effects discussed here, (u':>,, in measurements of forces on such a porous plate, the drag
having been deleted. The modeling problem that the data in would reflect only the solid surface portion of the C. in this
Ref. I should significantly impact is twofold: form of the boundary-layer equations. However, the

1) u0.,, ( ),, and (u'v') all depend on the details measured force would include a pressure difference within
* of the flow through the particular wall. Although (i)., and the passages of the porous wall due to the m(zO,, vectoring

(u'v'),. may be estimated from the data, <0t',, must be (seen in the boundary-layer equation), which also involves
treated parametrically until a compatible solution is the contribution to C averaging from the open surface.
obtained. For cases in which the induced mass transfer vectoring,

2) As in all TBL modeling, C1 depends explicitly on all and (,i), is significant, angle (a)/magnitude fm) variables
other effects on the right-hand side of the equation. may be appropriate. Utilizing the following definitions of a.

Therefore, some effort is required to assess which effects m:
are important and their quantitative contribution in a general
case. (6)

Due to the relatively low blowing rates used in Ref. I
(relative to that which would cause separation), both the vec- m ( -a') . <U) /u, (7)
torng effect (u0. and the explicit dependence of C on the
mass transfer may be ignored in this particular case. The the vectored blowing term in the boundary-Iayer equation
resulting error of a few percent is well within the precision of becomes
the data. This allows us to focus on the representation of the [i

2 
-M(l i-az) ,(l .J)1 (8)• ~~~terms [ :-mI+c 2  ,( -a) 8

term "(3) The magnitude m responds to the pressure difference across
the porous surface and its "loss coefficient." whereas a pro-which are herein combined into the following single model- vides a sensitive measure of the induced vectoring, which

ing expression also depends onthe flow within the porous wall through
(i'), and (u'v'),. The mass transfer term in this formC, + C2b

2  (4) exhibits extrema with which the effect of vectoring may be
evaluated. For a given a, this term exhibits an extremum
when ( ),,!u*=Yz and, for a given m, when (u>.,/u=

L55 , * (l I (l+8m-) '")/4,-m z , 1/i'-ml. Since (),, will be >0
• - Titanium WON yet c , the effect of naturally induced vectoring could be

Cqz-.002, Ct-8Q0 relatively small. The effect of actively imposed optimal mass
transfer vectoring is currently being studied for both steady

1.35 £ • -WON and unsteady flows and will be the subject of a future paper.

*C'-0022, C,'-50.0
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Boundary Conditions for Flow Over Permeable
Surfaces

G. J. Hokenson'

Introduction

The subject of this work is viscous flow adjacent to a
permeable surface and the boundary conditions appropriate
thereto [1]. Our objective is to generalize and extend the
analysis in references [2 and 3) from first principles in order to
clarify the relationship between the experimental reality of a
distribution of discrete nonuniform jets in a crossflow and
computations which employ continuous (locally uniform)
normal velocity and zero slip boundary conditions. The
hypothesis is that some details of the (vortical) flow passing
through the boundary and the external (partially slipping 1lI)
flow along the boundary affect the qualitative structure of the
solution.

The analysis presented here is an extension of the work
described in reference [4) and is directed at continuum flow
phenomena. Although, for most problems of practical im-
portance, we are generally interested in turbulent flow, a
laminar flow is considered here to expose the particulars of
the premise. Some of the results, therefore, bear directly on
current interest in laminar flow control by suction. The role
which turbulent flow considerations play shall be discussed
subsequently. Finally, the restriction that a boundary layer

£structure be maintained, forcing limitations on the mass
transfer magnitude, shall not be invoked.

Cosider first the detailed picture of a porous wail as a
distribution of discrete jets. (Me case of blowing will be used
for purposes of discussion.) By placing a "jump-type"
control volume at the exit plane of an individual jet, the
results of reference 14J indicate that the external flow "ips"
over the jet (i.e., the mas transfer vector tilts) with a vdocity
determined by:

(Ow) =6, (1)
where 6 signifies the jump in values of the variables across the
control volume. Conventional notation assigns P, u, v, and r
to the fluid density, streamwise velocity, normal velocity and
shear stress, respectively. Invoking continuity:

ROU) = 0, (2)

W'Clen Ti umma Caoemn, LM A o. CM., Um.

ceuIb..d by the ib3hgm~mbieWm .1 lbu Ainam6 s Uavw
MamAwC Emiua. dMiaw mdw b th RU b hamud8 DI*
me, Februry 4. IN.
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across the control volume allows us to write equation (I) as: clarified by equation (8). This relationship also embodies

am (3)v information on the injected flow vorticity and structure.
Applying the same decomposition, averaging and jump-

This result shall now be generalized to an arbitrarily per- type boundary control volume analysis to the full equations in
meable surface for comparison to the aforementioned zero vorticity variables results in:
slip, (locally) constant normal velocity boundary condition

* theoretical formulation. For cases in which u and - within the (v)6 , = -5(t ° . -w°u °  
Y)

boundary are zero, equation (3) is compatible with the results + v(cc) ,:., and (10)
in [ 1 -3). 6('n0,,.=6(u0 W, , , >, (II)

which provides often-needed information on flow curvature
Deveioplies at the wall.

Consider the flow along a porous surface composed of a
* distribution of openings which is specified statistically in Discusion

terms of size and location. The external flow is assumed to be Therefore, we have established a relationship between the
two-dimensional, however, extension of the results to include discrete distribution of jets in experiments and the continuous
three-dimensional effects is straightforward and will be noted. mass flux/shear stress distributions in computational
A local averaging process is now invoked (3] in planes parallel predictions, as long as (u) 0 at the boundary. If (u) is set
to the boundary. 2 The spatial scales of the averaging are large equal to zero at the boundary, calibration of some aspects of
relative to the porosity yet small relative to the streamwise the theoretical formulation with experimental data must
(and span-wise) variations in the mean flow. Each of the compensate for the approximation. It may be that the

* variables is decomposed into its local spatial mean plus a magnitude of the slip is small, inherently or due to term
perturbation (e.g., u = (u) + u°). When this decomposition cancellation in equation (8). However. the structure of the
is applied to the Navier-Stokes equations for constant density injected flow does now enter the problem. Possibly. the
flow, the resulting equations may be spatially-averaged to appropriate slip velocity (guided by equation (I)) may be
provide the result: obtained empirically by judicious iteration between ob-

(U), + (v, =0 (4) servation and theory.
(u)+ ((U) 2), + ((U)(v0) However, the formulation suggests several more systematic

I (approaches. First, since jet structures may be reasonably
- (p)/P- (U0, (uv ° )y + V() (Z:)y (5) parameterized, the situation is much simpler than turbulence

((Y>, + ((u>) )} + ( (V):), in representing the nonlinear terms. Therefore, a quantitative

0 2assessment of the effect of differences in detailed structure
(6) between porous boundaries which are equivalent in the mean

where subscripts denote differentiation and subscripts in is possible. Secondly, it suggests that applying computational
parentheses denote a vector component.3 Not surprisingly, boundary conditions at some height off the wall for which

* this is reminiscent of Reynolds decomposition for turbulent (u0 v0 ) = 0, analogous to the flow over a wall film, may be
flow. Additional terms required for three-dimensional mean more appropriate.
flows are apparent. If we now apply the jump-type control Consider these two uses of equation (8). Across the
volume to the permeable boundary over the averaging boundary, 6(u) may be computed if we know something of
domain, the results analogous to reference [41 are: the injected flow structure. It is clear that, over the openings

u5 and v0 > 0 and over the solid portion u° and v0 < 0.
.5(v> =0 (7) Therefore, (uYv° ) is a positive number. Given (v>. (u) at the

* (v6(u) = - (uu °vo) +p6(.,)( (8) wall may be computed (as a function of (,u) at the wall, as

0 required computationally) by specifying typical detailed
,1/.2 distributions of u0 and v° of interest within the porous

6(W )= _a(p>/PS(tVo). (9) boundary, computing their jump across the boundary ac-
cording to equation (1) and then averaging. The procedure is

In this representation, total mass flow through the pent necessarily iterative, requiring an initial guess of the slip
meable boundary and shear force on it are locally equivalent velocity.

vrepresentations. he averagingareabetween the fluxdiscrete and fromntinuus Furthermore, assuming that the height above the boundary
the discrete jets by the ratio of open to total surface area. The at which (uv ° > - 0 is small, the jump expressions may be
therge is ar t ess y th e d rt of o n tohtotalsurfce a . Te applied (to some lesser degree of accuracy) between it and theaverage shear stress is reduced from that on the solid in- wall boundary. Note that the jump across the boundary must

terstices by the ratio of solid surface area to total surface area. wall bou te tn the ma r the ounary ust

Some new features appear, however. Most importantly the first be computed. In this manner the equations are used to

average streamwise velocity at the boundary is nonzero and provide the boundary conditions ((v) and (u)) for com-

related to that in the boundary (allowing for the possibility of putations at that level where the discrete jets have mixed out.

obliquely-oriented jets) by equation (8). The subtleties of such This is reminiscent of using wall functions and, indeed, some

a situation (whether due to geometrical or flow-induced profile hypothesis is required to do this accurately. If explicit
effects of internal normal stresses versus account of the injected turbulence is of interest, the tur-obliquity) regarding ees f inter n o rm n-thery bulence kinetic energy and length scale at the displaced height

surface shear stresses and interpretation of experiment-theory could be computed from model equations utilizing the jump-
comparisons with the appropriate boundary conditions is type control volume analysis. This is relevant to the comment

in reference (5$ in which the authors refer to blowing as
• ccxe that the averalng weightins (unction was chen tohaconstov "provoking the viscous sub-layer." Utilizing the approach

the averaqtin domain and zero outside of it. In this manner Reynolds averaging developed here, the extent to which the injected flow structure
rules are retained and the so.called Leonard terms do not appear. totally disrupts the near wall conditions may be assessed.

1 This formulation also significamly clarifies the effect of mass transfer on Consider the two-equation k-e model as an example only,
the wall veertity flux. If (u) is nonzero (due to active vectoring or naturally not necessarily proposed here as a general computational tool
with nmnally normal injectioan. (.), responds to the four advective iemi
in equation (5) even in constam pressure flows. if (u) is also non,,,*, ith for these flows. In this preliminary evaluation, we assume
(u), term also modifies the vorticity flux at the wall. that the low Reynolds number postulates, relative to the near

Jwnal oi Fluids Unginemlng SEPTEMBER 198, Vol. 1071431
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wall region of the flow oser an impermeable boundary 16, !1. mulation, the standard mass transfer term is modified to: I
are inappropriate here and the relevant form of the equations - <u>./a,) ((t )./u,) and (uv) and the Reynolds
is that for which molecular effects are ignorable. By applying stresses (if the flow is turbulent) at the wall are included.
the jump conditions across the layer, 6y, in which the jets Utilizing such a formulation, the effects of slip/vectoring and
*"mix out." the following expressions for the turbulence the peculiarities of various walls on (uov> may be examined
kinetic energy and isotropic dissipation ensue: with data such as that in reference 181.

- ptA=q. -r P, -D, l', and (12) Acknowledgment
& = q + [P. - D, I bY (13) This work was carried out under the sponsorship of the

where I I ndicates the vertical spatial aserage across the 4y Aerospace Sciences Directorate, AFOSR and the Office of
layer and the diffusive fluxes (q), production (P) and Basic Energy Sciences, Department of Energy.
dissipation (D) are:

q, =tl./a. ) ak;Y, q, =(M,/o, )8fl 8 y References
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Permeable Watl." JFM. 19. Vol. 30. Part 1, pp 197-20".

D. -, D,/=C 2 XD/k 2 Taylor, G. I., "A Model for the Doundar Condition of a Porous
Material," Part I, JFM. 1971, Vol 49, Part 2, pp. 319-336

Utilizing expressions or values for 1, (C5 pk 2/le), Ok, 0,, C1, 3 Saffman, P. G.. "On the Bounda-y Condition at the Surface of a Porous
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* Vortidity with Variable Viscosity

Gustave J. Hokenson'
The Hokenson Company, Los A ngeles. California

* UT~ HE formulations developed in Ref. I are eminently
.3useful in the analysis of vorticity mechanics in complex

flows. As noted therein. the focus of the study was not
viscous compressible flow. However, some of the equations
retain the viscosity inside various derivatives, implying that
all the variabl viscosity effects are accounted for. at least
formally. The purpose of this Note is to document some ef-
fecat of the additional terms required to complete the for-
initsaion wheni vartable viiscosity flow is the subject of
interest.

Followin the notation in Rtef. 2. the equations of motion
my be written in the rollowing form:

oDm,/DrI - - (I

where e, is The symmetric part of the deformation

(2

n MW& is the Kronecker delta. Density. vorticity,
* veloci; ty, normal mares. body force. amd the coficient of

viscosity awe assigned thir traditional nomenclature.

Submitted June 7. 1983; revision receivd Svp.21.I1@S. Copyig**
0 Amerim Institwe of Aaressamcs and Astranautla. loc., IMS.
AN nhw -cesetied.
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Straightforward differentiation of the viscous terms in Eq. If. for example, i exhibits some empirical dependence on.
(1) allows them to be written say. ;)uz/ax, the vorticity generation will respond to a term

proportional to
+ 2 4e a / a1 x , - . 1 a p la x ) 3a .u

3L 3

In addition, the appropriate vector calculus identity allows
this expression to be rewritten as which, clearly, can undergo several sign changes across a

shear flow and contribute positive or negative terms to the
4V X +{ -+2 L() vorhicity balance. The accurate representation of variable
3 x ax, ax, viscosity effects is, therefore, critical in representing the

detailed vortical mechanics.

In order to derive the vorticity transport equation, this ex-
* pression is substituted into the equations of motion, each Acknowledgment

term is divided by density D, and the entire expression is sub- This work was carried out under the sponsorship of the
jected to the curl operator. Comparing this with Eq. (I) in Aerospace Sciences Directorate. Air Force Office of Scien.
Ref. i. it is clear that the additional variable viscosity terms tific Research.

2 v x ( e,lax, -. ilx,) ()Refeeam
Z .1 -Lakshminarayana. B. and Horlock. J. H., "Generalized Expres-

sions for Secondary Vorticity Using Intrinsic Co-ordinates," Journal
must be addressed for general viscous flows, of Fluid Mechanics. Vol. 59. Pt. I. 1973. pp. 97-115.

The focus of interest in this study is the effect of te first 'Batchelor. G. K.. An Introduction to Fluid Oaemics. Cam.
term in flows for which the approximation p=constant, bridge University Press, 1970, p. 147.
.1-0 is a good one. yet p must be allowed to vary. In addi-
tion to various laminar flows, this situation is applicable to
turbulence modeling as well. in which ji is related to the local
flowfield properties. We consider, therefore, the following
term in the general %orticity transport balance:

(
3 )xe,y-) (6)

For cases of interest in which A& varies predominantly in one
direction, herein x,, the components of the curl in the three
orthogonal directions are

a3 (e.,Zs 1 (e48

* a e~i~) .. (!i ) (7)
a"x, ax, ax2 ax),

If x, x,. and x3 are associated with the streamwise, normal.
and spanwise coordinates of a shear flow, it is clear that ex-
plicit three-dimensionality is required to impact streamwise
vorticity from variable viscosity terms. However, in two-e dimensional flow, the spanwise vorticity is affected by the
component of the curl in x1 :

8 2 atx.3~/ ax 1 (8)a.rz ax, ax, l xt

which may be written

• , a a u
L "x -)- -- ,z(9)

8x, axa 2 8

If. in addition. uz-4u, this expression further reduces to
one-half of

* .3x "x ax ax asx (0)

or

3, x eu t  asp am, (II)
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Thrust Vector Control Utilizing kdepd

Asymmetric Jet Nozzles l-.

Gustave J. Hokenson*
The Hokenson Company., Los Angeles, California -- -- StSu~
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R) ECENTLY interest in thrust vector control with rigidly
i~mounted thrusters has been revived. The results described Fg ofgrts fdtnml.Jtsi

in this Note are associated with the side-force generated by a stemo o -- I foo a loidloo i m of sosupersonic jet with an exit plane which is oblique to the Ogm~" V0701 aWYi.~r 081k flo i - Smd Oer-~
centerline or the exhaust flow. As shown in Fig. 1, depending "Po odios
on whether the flow is over- or under-expanded, the direction
of the exhaust flow is defleced either toward or away from the
normal to the exit plane by au amount related to the pressure *10' M0 .4 L6 is 2
imbalance and the projected area of the exit plane in the i 2 .

*lateral direction.' Therefore, control over the direction and Z
amount of side-force is available by varying the stagnation
pressure and exit plane obliquity.

Although the present results are associated with a two- g I
dimensional configuration, with the exit plane obliquity
established by extending one wall of the nozzle, application to
an axisymmetric configuration is conceivable. For example,
consider a fixed axisymtnetric thruster enclosed by a cylin-
drical housing which is split longitudinally into various sec- -Eypemit -- Tsr
tions (see Fig. 1). At the null position, the end of the cylinder -0
coincides with the exit plane of the thruster. As various com- 1%. 2 Side-ferce vs iamismo prer for -.6 Mesmmbers
binations of cylindrical sections are translated forward of the one tw~imooe 1 .jet Bok'oa -- 3--m oer axis
exit plane, the radially projected area of the exit plane may be plase. Asymmetry factor (monk wall exasoloossa.e a*l bst)-
oriented toward any azimuthal angle. The amount of pro- 11.11 Fj -Os56.P M pigs.
jected area and its orientation may also be changed rapidly,
which adds another control feature to the thrust vectoring.

* The focus of the work described in Ref. 2 involved the ex-
tent to which viscous effects affected the performance, par- *t.0 male
ticularly at over-expanded conditions. A two-dimensional / 2 24
supersonic jet of aspect ratio (height/width) equal to 1.5 was
established over the Mach number range 1.0 to 3.0. One wall I/I
of the nozzle contour was then extended a specified fraction of
the nozzle height to establish an oblique exit plane.L 1,1

* Transparent and parallel lateral sidewalls bounded the nozzle AterIand extensions thereof through which the flow angle could be
observed. The side force generated was measured with a strain
gage balance to an accuracy of * 2% of the reading, based on
the scatter in repeated experiments and comparison to the -IP~iA
measured flow angle. -to

In order to assess the degree to which viscous effects impede Fl. SM4oc 93 susuf puefor Voies N" membereaccurate analytical prediction, the amount of asymmetry was Me sasnbjipufselle Jet mok w asn u _ s
limited to maintain the wall extension within the domain plums. AsvmmEW 46dme (monk. waS wedlea mil 00
established by the Mach wave originating from the opposite 4M3 F0, =u b, PW, M~ lisl
noml wall at the exit plane.

Figures 2-4 depict the forces measured on three nozzles
whose exit plane is offset by an amount 1.0. 4/3, and 5/3
times the jet height, respectively. Comparison with predictions
of two-dimensional inviscid flow theory is shown also. These M*20

G results my be converted into force coefficients by dividing the P-4
faults by the surface are of the wall extension and the exit
dynamic pressure. The corresponding plot of the Fig. 3 data isr
presented in Fig. S. These results indicate that. even in the sim-
pie case established here, nostrivial deviations between inw --

that the vectoring control may extend well into theov
ensded repmo before the nozzle boundary layers begin to40 I

Ressived Sep. l1 5 M evison reeuVd Nov. Is, 1965. Copy'right all5.4v samisismelas gsemsiehr " Sm n m
* AmerIm Inm. of Aeawaics and Astoatcs, lan., 196. ema two4Eimislui eU35n Jet mon ef ioi a ll
AN ro mi .-- ~n Aa bow e0f weil 4mismd'ol -O bk&W

*Csf Scien"i. Member AIAA. 5&/Fm "a U Wb P0 qd
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mote 2.0

/ 2

Fig. S Usift4.se cesellelas e sulnen P fer wutams
NW* 6006M. forS an um n. ies men ses Pomot

separate and the entire flow degrades. although the Reynolds
number ftedence of the effect in this configuration remiains

* to be quantifled. 0n the basis of these dams. it is concluded
that control of the thruster plenum pressure and exit PIaNe
obliquity (including the afoe-nwoed aaiaymmetnic case
wherein the sideforce vector may be oriente azimuthally) pro-
vides the ability to quickly orient the thrust vector of nongim-
balled jets.
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The angular structure of viscous incompressible flow

Part I. Analysis

Gustave J. Hokenson, Chief Scientist

The Hokenson Company

Los Angeles, CA 90005

Abstract

The governing eqUations for time-dependent three-dimensional viscous shear flows are
S

transformed into velocity vector angle and magnitude variables to expose the flow angle

structure in various limiting situations. For purposes of analysis when the mean stream-

wise flow is reasonably well characterizable, this formulation admits the possibility for

extracting essential flowfield peculiarities and providing insight into various complex

interactions, including those associated with turbulent flow. For full numerical simulations

of shear flows, the formulation simplifies the mathematical structure and may allow for
e

more effective computation.

0

0
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I. Introduction

The use of velocity vector magnitude and angle variables in the solution of inviscid

compressible and incompressible flows has a long history of successful application.1,2

Less common is the implementation of such an approach in viscous shear flows, which is

the subject of this study. Part I of the work involves an exposition of the general formu-

lation and its application in various limiting cases. In a future paper, the results of a

computational study, which has been initiated, shall be presented.

Consider the time-dependent three-dimensional continuity and Navier-Stokes equations

for a constant density Newtonian fluid3

Ux + Vy + wz =0 (1)

u t + (u2 ) + (uv) . (uw) = F

v + (vu) + (v2 ) . (vw) = G (2)

wt + (wu)x + (wv) + (w+ )z = H

where:

F F - + vV 2 u

G - y + vV 2v (3)

H - + v 2w ,
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* and v is the constant kinematic viscosity, V 2 the conventional Laplacian operator and p

is defined as the mean normal stress (herein equated to the equilibrium thermodynamic

pressure) divided by density. Following conventional terminology u,x; v,y; w,z correspond

* to the nominal streamwise, normal (along which the dominant velocity gradients occur),

and spanwise velocities and coordinates, respectively.

• The following dependent variables are now introduced in an attempt to expose the angu-

lar structure of various shear flows:

m- (u 2 + v 2 + w 2 )/u )(r)

= v/u (4)

w/u

* where U(r) is an appropriate reference velocity. in general, we do not expect this trans-

formation to be useful when the streamline lies in the (y-z) plane orthogonal to the

nominal streamwise (x) direction. That is, when u=O but v,w 0 we may have to retreat

* from this formulation, locally.

Clearly, m may be expressed as:

6

m = (u/u(r))2 (I + e 2 + a2) (5)

For convenience in transforming the equations, several of these terms are grouped

together such that u may be written:
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u2 = m6 ; E (1 + 0,2 + c2 )/u r) (6)

Utiiizina tnese definitions and relationships for m, 0 and , Eqs. (3) become:

(m) t + (mE) + (m$E) + (mn) = F (7)

((MSrnEY )t + (MS G,) + (mBEG2) + (m~c0)z = C (8)2y z

0 ) + (mBa)y + (mct 2) z = H (9)

By expanding the differentiation in Eqs. 8 and 9 and utilizing Eq. 7, the following com-

pact, yet complete, relationships for 0 and ai ensue:

N3t 0 = (G - OF)/u (10)

N3t a = (H - aF)/u (11)

where:

N - a/t - u (O/x + ealay + ca/az) . (12)

Note that Eqs. 10 and 11 may be combined to express the sum and difference of the two

flow angles in the following form:

N3 t (0 ± 0 ) : {(G±H) - F(E ± I)}/u . (13)
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• Clearly, continuity and the magnitude, m, momentum equation must be considered in

order to provide a closed set of equations for u,v,w and p. They shall, indeed, be add-

ressed later in this analysis but the focus of the work in Part I is to expose the structure

* of a and c, for various cases in which u can be characterized parametrically. This approach

embodies the dynamics of interest in lieu of the simple kinematics derivable from contin-

uity if sufficient infcr mation on the streamwise and cross-stream derivatives is given.

Prior to addressing various specific cases, the form of the governing equations encourages

us to examine the loci where u = 0. As long as the flow remains incompressible, this

* mathematical structure is complete and G, o and their derivatives are everywhere bounded

within the previously-stated restriction of streamlines from the y-z plane. (It has been

found that several important cases of interest satisfy this restriction when analyzed in

detail but do not in traditional formulations. An example is a boundary layer with wall

mass transfer. Clearly, at the wall v 0 but u is traditionally set equal to zero. It is now
4 5

known that u at the wall is small but finite' .)Therefore, when u = 0, N3 t = e = G/F

and ct = H/F with the values of (G - OF)/u and (H - ctF)/u determined from L'Hospital's

rule. If, in addition, u = uy = 0, as occurs at the point of separation in a wall-bounded

shear flow, G - OF and H - ctF values are stationary at that point (still possibly zero)

and the values of (G - EF)/u and (H - cF)/u are determined from the curvatures of G - OF

and H - caF. For various cases G - OF and H - aF" may be either maxima or minima and,

therefore, @*/at and n/at may be positive or negative. Subsequently, we shall analyze

specific steady flows which modify this argument somewhat.

II. Discussion

We now consider some restricted cases of the governing equations In more detail.
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A. Steady Twc - Dimensional Flow

in tnis situation, a = H = 0 and the governing 0 equation becomes:

o + ee = (O- OF)/u 2  (14)x y

or, in streamfunction (,, x) variables:

= (G- OF)/u2  . (15)

Within the same constraints as before (E ) = by restriction and 0x, E y g by assumption

of physicality), when u = 0, E) = G/F but also, G - OF is stationary at zero. If, in addition,

uy = 0, G - OF and its first three derivatives must be zero. This is clearly a significantly

strengthened constraint from its unsteady flow counterpart.

Utilizing the definitions of F and G along with the angle/magnitude transformation, the

E equation may be written:

(1 - 2v(rm)1/mB)O) + (e - 2v(mS)1/mS)ey = (-p + ep )/mB + VV20/(rr)I.(16)
y y y

In order to isolate certain cases of interest, It is convenient to non-dimensionalIze this

equation with length scales L(x ) and L(y), angle scale e and the previous velocity scale

u(r). Utilizing the following definitions:
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x E= L(y/L~x

0 2u /u'(x) x

It 2u /u 2  (17)

Re E u ()L ()/vje= U(r) (x)/

E Re
-1

the governing 0 equation in dimensionless variables becomes:

(1 - ED(X) )x + (--E (y)/xC,(r))(E(r)/X)ey = (eP - p /e(r) )/u' +

xx+ e yy/X 2 )/u (18)

In order to retain the two-dimensional equation of continuity in its primitive form, x is

set equal to 0 (r) so that the G equation may be written:

(I - EI (x) ) x + () - v (y)/X 2 )0y = (ePx - py/X 2 )/u2  + E(Exx + 0 yy/

,2)lu .(19)

we now consider various cases of Interest for which £ << I . The most straightforward

limit is X >> I for which the first order solution for e (in an Implied perturbation expan-

sion) may be developed by letting ) - In Eq. 19, resulting In:

0 x + eey= epx/U' + E /xxU , (20)

which can be made formally Invariant with respect to c by utilizing x/c and y/c as

Independent variables.
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If, on the other hand, X << 1 such that E/X 2 << 1, i.e. X is small relative to one but still

large relative to the presumed ve: y small E , the governing 0 equation becomes:

-x +eG . p y /U' 2 + E'G O /u' , (21)

where:

U , u ,and

(22)

are used to maintain the canonical form of Eq. 20 which is independent of X. Evidently,

the appropriate velocity in this case is a typical v. Eq. 21 also may be made invariant

with respect to E via x/c' and y/E'.

This case is to be contrasted with the traditional boundary layer limit for which X << 1

but E/X 2 = O() (i.e. L y/L x  Re - 1) so that all the coefficients in Eq. 19 are of order unity.

If E = O(A2), the term - 0(y) 0y must be retained and the equation becomes:

+ (0 - (C/X2 ) 0(y))ey - py/X 2U2 + (C/X2 )eyy/u (23)

For purposes of analysis, - 0 (y) is treated as a small (variable viscosity - like) term which

can be incorporated as a perturbation correction to the solution of:

ex + 00y - y/u,1 + i0 yy /u' , (24)
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which is essentially identical to Eq. 21, except that E' = . Eq. 24 also may be

made invariant with respect to c by employing x/E and y/ef as independent variables.

The traditional use of Eqs. 21 and 24 involves the formal limit X - 0 for which p = 0,
y

the boundary layer assumption. Note that the behavior in this limit is formally the same

as our previous analysis of u = 0.

Our use of the previous scaling is directed at simplifying the coefficients in the governing

equation while retaining all the terms such that the mathematical structure is complete.

We leave it to the solution to expose the behavior of the dependent variables when c and

X are small enough to have allowed various terms in the equation to be neglected.

Further analysis of Eq. 24 is facilitated by the use of streamfunction independent variables

(W,x) wnich allows the equation to be written:

Ox =- p/u' + E NuG (25)

If we define an equilbrium, 0 (eq.)' which is Independent of x, Its distribution In terms

of u' and p is:

S(eq.) fl/u'fdp/u' d4) + +C 2  (26)

which, if u' varies weakly with 'p (as It must in order to account for '(y) via perturbation

theory), reduces Eq. (26) to:
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E iC (fpdi)/u °  + + C (27)
(eq.) 2 C

In addition, thin internal layers may exist within the shear flow for which Eq. (25) provi-

des the following 'jump' (6) condition:

fdp/u' E 1. (u'eI , (28)

or, for weakly varying u':

E = 6p/u' 2  (29)

Finally, the general solution of Eq. (25), in terms of a known or characterizable p and

u' field, is readily obtained from transient heat conduction solutions to the equation

written as:

-ex - (u' ) - P*/u' , (30)

and the u' (%p) variations treated perturbatively and parametrically. In addition, since the

u' (4) variations are weak in order to treat 4(y) via perturbations, u' may be set equal

to a constant determined by collocation in order to optimize the approximation of neg-

lecting its distribution.

If u' (0) characterizations are meaningful, Eq. 30 may be written:

'x - cdu' *'* = - p (31)

where: u'dO = dO'
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whicn,, altnougn non-linear, is particularly convenient for analysis. The 'equilibrium' solu-

tion ano 'jump' conditions of Eq. (31) are apparent.

Analysis of the behavior of Eq. 20 is more clearly carried out computationally inasmuch

as the conventional streamfunction ($,x) transformation results in a complex elliptic

equation for G. If the less conventional (W,y) streamfunction transformation is invoked

(3/:x = - v9/?; 0/Cy = /ay + u'/ ), Eq. 20 may be written in terms of 02/2 = :

y = 2& p$/u + E(2.) ( , (32)

in which the non-linearities limit closed form analysis. However, the equilibrium and

'jump' conditions may be approached as before, particularly if u ($) relationships (where

uc = dc,') are useful.

B. Steady Three - Dimensional Flow

By expanding and non-dimensionalizing Eqs. 10 and 11, the following expressions for e and

a ensue as E -. 0:

x + (E - (c/X2(y))4(y))ey + (a - (C/X(z) ) (z) )G =

- (p y/X2  - Op )u 2  c(e + y y/X2 ) )/uy (y) -ex)/ (xx yy (y) * zz (z)

(33)

(0 - (Z/X1(y)) (y))ay + (a - (C/X2(Z) (z)) z =

- (pz /,2 - pX )/ul + C(axx + /X2 + /X )/U
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where the additional scale ratio X ( Lz) /-(x)) has been introduced and the characte-

ristic ance, a(r ) , has been set equal to X(z) in order to retain continuity in its primitive

form.

In the limit as X(y), (z) -" O , Eqs. (33) may be written:

{I × ++ ca/az - p x/U - (E/u)3 2 /;Xfl ,c = 0 . (34)

Alternatively, if X(y) = A(Z) "* 0 such that /X2 is still small, Eqs. 33 become:

{/ax + C3/&y + /az + pj/u' 2 - (c'/u')( 2 /ay 2 + a2 /az2)}e,a = 0,

(35)

where j = y for G and j = z for a. In the traditional boundary layer limit this same form

is retained with E replacing E' and the (presumed weak) variable viscosity - like 0

terms accounted for perturbatively. Clearly, if 4(y) and 4(z) are large, they must be

included with E and a in the advective operator.

In the mixed limit case, X - and X(y) -" 0 such that C/ 2 =1 , Eqs. (33) become:

N3 9 = -p y/u' 2 + £ 1 yy /U

SN3 a = aP x/u 2 + a yy/U (36)

where: N a/ax + ea/ay + ca/az
3
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0

and C(y) must be accounted for at higher order. Alternatively, if (y) and X(z) -" 0

such that E/) 2 = 1 the Eqs. (33) are written:

N3 0= Op x/U 2 + 8ZZ /u

N 3(37)
N~i= -p/uZ

again assuming that ¢(zis subsequently accomodated. By scrutinizing these mixed limit
agai asumin tht *(z) seuny

cases it is clear that the essential angular structure of the flow will be markedly diffe-

rent from that we have observed previously. Consider, for example, the case where px

0 and a is small. This results in:

ex + E = z/U , (38)

indeed a curious mix of derivatives. Three-dimensional phenomena are most clearly inve-

stigated numerically and will be described in a future publication. Note that, unlike two-

dimensional flows, total knowledge of u is inadequate to prescribe the angular structure

from the kinematics of the incompressible continuity equation.

C. Time - Dependent Flow

By adding the dimensional terms:

et/u and Qt/u (39)

to the advective operators In Eqs. (33), the three-dimensional formulation embraces

unsteady flows as well. After non-dimenslonalization, these terms are scaled by a
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coefficient:

L (x)/t (ru (r (40)

wnere L.) replaces C.(r) and a(r) after clearing the equations with respect to 0 (r)P(x )

a, n dar)i/L(, respectively. If t is chosen as L (x)/U, the additional dimensionless

kfl (X (r (x) r) ( Cr)l

terms 0t/u and at/u are present in all equations for which X .

In cases for which A(y) = X(Z) -. 0 , it is more consistent, formally, to set t(r) = L (y,z)/U(r)

and exoress the operators as:

E t / u ' + 0 +. ... ..... ,and

(41)

a t/U' + UXx +.......

For mixed limits, the a and E) equations respond most naturally with different 'time con-

stants', significantly enriching the range of solution characteristics to be exposed numeri-

cally.

For the two-dimensional flow governed by Eq. (24), the unsteady counterpart is:

I

, + eeyE = - py/u" + C eyy /u' (42)

* or, in conventional streamfunction variables:

et +u'e x : - pP + c u' (u'e) . (43)
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If t -e transformation c? = u' dO allows for meaningful parameterization of the velocity

field, Eq. (43', may be written:

t /u' + x = p C I u (44)

both of which iliustrate significant changes in the boundary layer approximation p, = 0.

For purooses of analysis, if u' = u' (w), along curves in the x - t plane for which x - u't

is a constant, Eq. 43 may be written:

et  - p + cfu' (u'Oe) . (45)

Once again, the general transient structure is so complex for either two- or three-dimen-

sional flows as to require numerical investigation.

With regard to time-dependent flows, considerable interest exists relative to the angular

structure of turbulent flows. The counterpart of the Reynolds stress tensor may be found

by setting c = 0 in Eqs. (33). For notational simplicity, the case X(y) = X(z)  will be

used without justification. In this case, the equations for 0 and a become:

{u-1aI@t + a/x + (WIay + a8/z - Px U} a,e = 0 .(46)

Since the continuity equation may be written:

ux + (ue) y + (uM) = 0 , (47)
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* Eqs. (46) become:

Cct (UCx + (u9a) y + (u 2) z = ap/U , and

* (48)

(u) + (ue2) (uae) = Op x /u

* If we consider two-dimensional "turbulence" in order to expose the angular Reynolds

stresses, Eq. 48 may be written utilizing traditional Reynolds decomposition as:

x + .y = OP/2 - (P'u' + (u y )/u - u'e'(25y + P)/u - EPP

(49)

where P _=p x and triple correlations of the fluctuations (designated by the prime) and

* the x - derivative of i70' have been neglected. Jn addition, the ensemble mean values

(designated by the overbar) have been assumed to be time - independent. The term (u'E)y

is reminiscent of the conventional Reynolds shear stress. However, this formulation expo-

ses additional explicit effects of P, e and E and correlations between P', u' and e'. It

remains to be seen whether or not the explicit appearance of these various terms is

sufficiently advantageous in light of the additional superficial complication.

e

With regard to the turbulent burst dynamics, various aspects of the vortical instabilities
6

are often described in terms of a four quadrant u' - v' map. Equations for e' and its

C statistical characterization may also be derived from the full 0 and 5 relationships, provi-

ding an analytical tool with which to quantify the various details which support the afore-

mentioned four quadrant uniquenesses of turbulent burst dynamics.

B
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* ill. Conclusion

The full time-dependent three-dimensional Navier - Stokes equations for incompressible

* viscous shear flows have been converted to vector angle and magnitude variables for

analysis in various limiting cases. This dependent variable transformation, in conjunction

with a streamfunction independent variable is seen to simplify the system of equations

* and permit analysis of the angular structure with the pressure and velocity field treated

parametrically. The utility of this formulation in the study of turbulence appears to have

merit. Finally, the equation structure is often considerably more "symmetric" in these

eP variables and may facilitate numerical studies which are currently under way.

0

S
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Appendix C

TBL INSTABILITY COMPUTATION INPUTS AND RESULTS
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Figs. Cl & C2. Input Mean Velocity and Eddy Viscosity Profiles and

Their Derivatives.
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THE HOKENSOK COMPANY

Table C3

BETA 0.180
OMEGA 2.080
EPSMAG 1.800
TAUEPS 0.008
RE NO. 44369.00

* ALPHA REAL ALPHA IMAGINARY K PHASE SPEED

-e.30270 -1.37840 4.55368 -6.66726
0.13009 -1.06779 -8.20811 15.37404

-8.25528 -9.79761 3.12447 -7.83455
-e.78Se8 -1.8500 2.35669 -2.54777
0.82936 -S.71168 -0.85811 2.41156
1.06350 -6.58185 -8.54711 1.88e58
1.28000 -6.46000 -8.35938 1.5625e
1.42000 -0.36080 -0.25352 1.46845
1.5400 -6.34600 -6.22678 1.29876
6.52391 -8.89511 -1.76851 3.81744

-1.19534 -2.48390 2.01166 -1.67316
-1.7460 -2.70466 1.54868 -1.14S48
-6.09686 6.64849 -7.13706 -22.61146
-1.36535 1.53441 -1.12382 -1.46483
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Figs. & Tables C11 - C13. Alpha Solutions For The Particular Cases Shown

With Conditions Identical to Fig. C3 Except T~ is Non-Zero.
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THE HOKENSON COMPANY
Fig. C11 BETA 0.100

OMEGA 2.000
EPSMAG 1.000
TAUEPS 1.000
RE NO. 44369.
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THE HOKENSON COMPANY

Table C1I

BETA 0.10e
OMEGA 2.000
EPSMAG 1.000
TAUEPS 1.008
RE NO. 44369.000

ALPHA REAL ALPHA IMAGINARY K PHASE SPEED

8.04822 -0.61343 -12.72114 41.47530
-0.73597 -1.69037 2.29679 -2.71749
-1.19810 -2.12207 1.77120 -1.66932
8.38616 -1.16745 -3.62318 5.17913
S.60584 -1.3801s -236.44127 342.63199
-0.44789 -1.S1448 3.38136 -4.46537
6.68870 -6.96358 -1.41556 2.93813
8.68239 -8.44285 -6.64897 2.93686
8.90013 -8.81632 -8.98698 2.22198
1.11133 -9.71862 -0.64663 1.79965
1.18127 -6.88843 -0.00036 1.69318
1.27817 -6.59046 -0.46196 1.56473
1.38630 -0.50984 -9.36777 1.44268

-6.34523 0.30375 -6.87984 -5.79327
-6.48le 8.70200 -1.45946 -4.15888
-6.95888 2.26686 -2.31579 -2.10526

-Cis-



THE HOKENSON COMPANY
Fig. C12 BETA 0.100

OMEGA 2.000
EPSMAG 1.000
TAUEPS 10.000

RE NO. 44369.
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THE HOKENSON COMIPANY

Table C12

BETA 0.100
OM1EGA 2.088
EPS1IAG 1.800

*TAUEPS 18.000
RE NO. 44369.888

*ALPHA REAL ALPHA IMAGINARY K PHASE SPEED

8.18888 -8.46808 -4.60000 28.88888
-8.18888 -1.32888 7.3333 1.11
8.18888 -1.20880 -12.88888 29.89808
@.588so -1.12888 -1.93183 3.44828

40 .900 -8.93888 -1.83333 2.22222
1.14880 -8.78880 -8.68421 1.7S439
1.32888 -8.68888 -8.51515 1.51515
1.52008 -8.68888 -8.39474 1.31579
1.17800 -8.28088 -8.17894 1.78948

-1.87429 2.3S657 -2.19366 -1.86169
*0 -8.8217S 8.9881 -9.36826 -91.04980

0

0
-C20-



THE HOKENSON COMPANY
Fig. 0 17 BETA 0.100

OMEGA 2.000
EPSMAG 1.000
TAUEPS 30.000
RE NO. 44369.
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THE HOKEHSON COflPANY

Table 0.13

BETA 8.00
OIIEGA 2.000
EPS11AC 1.800
TAUEPS 30.000
RE HO. 44369.800

ALPHA REAL ALPHA IIAGINARY K PHASE SPEED

e.0B000 -0.44000 -7.3333 33.33334
-8.6400 -1.72000 2.68750 -3.12588
-1.26080 -2.16088 1.71429 -1.58730
0.68880 -1.18888 -1.83333 3.33333
1.8088 -8.98888 -8.98888 2.868
1.28000 -0.76088 -8.63333 1.68667
1.20088 -8.28808 -8.16667 1.68667
1.36880 -8.6888 -8.48529 1.4789O
8.14080 -1.18888 -8.42857 14.28571

-8.12888 -1.38888 18.83333 -18.66667
-1.11325 2.48235 -2.15796 -1.79654
-8.68358 -8.88858 8.14286 -571.42853

-C22-



Figs. C1L a & b and Table C14. A Modified Input Eddy Viscosity Profile With The

Peak Located Twice As Far From The Wall As In Previous Solutions. Alpha

Solutions For The Particular Case Shown.
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THE HOKENSON COMPANY
Fi. Ci, BETA 0.100

OMEGA 2.000
EPSMAG 1.000
TAUEPS 1.000

RE NO. 44369.
SOLUTIONS OF ALPHA
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THE HOKENSON COMPANY

Table C14

BETA 0.188
OMIEGA 2.08
EPS11AG 1.000

pTAUEPS 1.000
RE NO. 44369.888

ALPHA REAL ALPHA IMAGINARY K PHASE SPEED

-6.98400 -2.02958 2.662S9 -2.032S2
-8.48000 -1.66088 3.45833 -4.16667
-0.19888 -1.33698 6.74747 -10.1,101
-8.19888 -6.54688 2.7S758 -18.10181
6h .17408 -1.3800 -7.93103 11.49425
8.51588 -1.14427 -2.22187 3.88350
0.75600 -1.01800 -1.34656 2.64550
0.98480 -0.91450 -0.92937 2.03252
1.16250 -8.80500 -0.69247 1.72843
1.34830 -6.78360 -8.52184 1.48335

p .88888 -9.41648 -6.46892 2.25225
1.23800 -0.40960 -0.33886 1.61551
1.41900 -0.18600 -8.11698 1.40944
1.18700 -0.99480 -9.80337 1.68492

-6.3180 -0.63200 0.19063 -6.28931
-8.20234 0.59344 -2.93289 -9.88435
-0.9860 2.26225 -2.29437 -2.02840
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